
SHLIME: Foiling adversarial attacks fooling SHAP and LIME

Sam Chauhan1, Estelle Duguet1, Karthik Ramakrishnan1, Hugh Van Deventer1, Jack Kruger1,
Ranjan Subbaraman1

1University of Michigan
{csanjana, eduguet, kartikrk, hughv, jakrug, ranjans}@umich.edu

Abstract

Individual metrics for classifier explanation provide semantic
reasoning to improve interpretability of a machine learning
model, allowing engineers to further improve and understand
black-box models. They can also be applied to a subfield of
machine learning, adversarial model analysis, allowing en-
gineers to detect the implicit biases of classifiers and better
assess their generalizability and utility. We seek to build on
the previous analysis by the paper Fooling LIME and SHAP:
Adversarial Attacks on Post hoc Explanation Methods (Slack
et al., 2020), with the goal of developing a new robust frame-
work for the analysis of adversarial networks to better de-
tect implicit biases. Although the previous work presented a
scaffolding framework to hide the biases of a given model,
we approach bias analysis from the other direction. Rather
than iterating on this framework, we analyze the individual
weaknesses of LIME and SHAP on intentionally biased mod-
els and experiment with multiple ensemble methods to im-
prove bias detection. First, we confirm the results of the pre-
vious study, identifying the modifications required to run the
original experiment. In order to validate these results, we ex-
actly recreate the original COMPAS experiment results using
LIME and SHAP explainers separately on models of varying
F1 scores. We then introduce our framework for testing aug-
mented and ensemble methods involving LIME and SHAP
on out-of-distribution classifiers. To allow for as many exper-
iments as possible, we created a testing framework which al-
lowed us to input various methods with identical models and
datasets. This made the testing process efficient and adapt-
able to any ensemble or augmentation we attempted. We gen-
erated similar graphs to the original COMPAS experiment,
allowing for direct comparison with the replicated results for
LIME and SHAP, seeking the method most resistant to biased
classifiers as F1 score improves. Finally, we compare the re-
sults of our methods with the original results of the COMPAS
experiment to identify methods with significant improvement
and utility for future works. We then discuss the implications
of our findings in the growing deployment of black-box clas-
sifiers in various fields.

Introduction
Our research problem focuses on the vulnerabilities of post
hoc explanation methods like LIME (Local Interpretable
Model-Agnostic Explanations) and SHAP (SHapley Addi-
tive exPlanations) to adversarial attacks. Post hoc means
that these methods explain the decisions of a model after

the model has already been trained and without changing
how the model works. These explanation techniques are
widely used in machine learning to provide interpretabil-
ity of black-box models. It is important to understand the
decision-making process of these black-box models as they
are increasingly deployed in critical domains such as health-
care and criminal justice.

The project aims to explore how adversarial models can
be crafted to fool these explanation methods, leading to
misleading or incorrect explanations of model predictions.
Specifically, the question is: How can adversarial attacks
be designed to manipulate the outputs of LIME and SHAP
while keeping the model predictions consistent? This can
have significant implications, as adversarial models that
have discriminatory biases cannot be easily identified using
post hoc explanation methods.

In this project, we will explore explainable AI (XAI), Ad-
versarial Learning, and Model Interpretability and Robust-
ness sub-areas in ML. In our replication, we will be using
popular datasets for fairness in ML, including COMPAS,
Communities and Crime, and German Credit. Both LIME
and SHAP have readily available Python libraries with well-
documented APIs that can be leveraged for this project. In
addition, the paper has a GitHub repository that provides the
necessary code to reproduce the project. This makes it eas-
ier to explore the adversarial attacks on post hoc explanation
methods and reproduce the results of the experiments.

The project is computationally viable because the datasets
mentioned above are small and can be processed efficiently.
LIME generates local explanations efficiently, and while
SHAP is more computationally expensive, it remains prac-
tical for small to medium datasets. The project focuses on
devising adversarial attacks that involve manipulating in-
put data rather than retraining entire models. This reduces
computational complexity and makes the project both time-
efficient and feasible within the available time frame.

Paper link: https://arxiv.org/abs/1911.02508 (Slack et al.
2020)

Related Work
The Mythos of Model Interpretability (Lipton 2017):
This paper posits the idea that post hoc explanations do not
guarantee that the model is unbiased. The paper argues that
post hoc explanations can be optimized to disguise mali-



cious intent in models, therefore using plausible-sounding
explanations to mislead.

Interpretation of Neural Networks is Fragile (Ghorbani,
Abid, and Zou 2018): This paper shows that even tiny,
nearly imperceptible perturbations on the input can signif-
icantly alter the output of explainability tools. The paper
also demonstrates that explanation techniques can be highly
sensitive to small perturbations, even if the underlying
classifier’s predictions remain unchanged.

Explanations can be Manipulated and Geometry is
to Blame (Dombrowski et al. 2019): This paper demon-
strates how explanation methods are similarly vulnerable
to imperceptible perturbations, resulting in a large change
in output while the input remains visibly unchanged. The
paper also proposes some mechanisms to improve the
robustness of explanations in the context of visual models.

Background
In this section, we discuss the intuition and math under-
pinning seminal post hoc explanation techniques- LIME
(Ribeiro, Singh, and Guestrin 2016) and SHAP (Lundberg
and Lee 2017).

LIME and SHAP
Complex models, such as ensemble models and deep neu-
ral networks, lack the natural interpretability found in sim-
pler models, such as linear models and decision trees. These
sophisticated models often operate as black boxes, making
their decision-making process opaque. To gain insight into
how these complex models work, researchers can create sim-
plified proxy models that approximate and explain the be-
havior of complex models.

In this replication, we focus on linear explainer models.
These models, known as additive feature attribution meth-
ods, are characterized by an explanation model that is a lin-
ear function of binary variables:

g(z′) = ϕ0 +

M∑
i=1

ϕiz
′
i (1)

where z′ ∈ {0, 1}M , M is the number of simplified input
features, and ϕi ∈ R.

Both LIME and SHAP seek to find interpretable models
that locally approximate a complex model to explain how
input features affect the complex model’s output. They share
a similar optimization framework:

argmin
g∈G

L(f, g, πx) + Ω(g) (2)

where

L(f, g, πx) =
∑

x′∈X ′

[f(x′)− g(x′)]2πx(x
′) (3)

While LIME and SHAP share this fundamental struc-
ture, they differ in their specific implementations. LIME
uses a distance-based weighting function πx(z) =

exp(−D(x, z)2/σ2) where D is some distance function
(such as L2 distance), defines Ω(g) as the number of non-
zero weights in the linear model, and samples around the
data point x by adding noise.

SHAP, on the other hand, samples around x by only ex-
tracting a random subset of input features, and grounds its
selections for Ω and π in game-theoretic principles, satisfy-
ing three key properties:

1. Local accuracy (explanation must match original model
output)

2. Missingness (absent features must have zero impact)
3. Consistency (increased feature contributions cannot de-

crease attribution)

Notably, the authors demonstrate that Shapley values are
the unique solution that satisfies these three axioms, provid-
ing a theoretical foundation for the SHAP approach to model
interpretation. The authors then show the following selec-
tions for Ω and π recover the Shapley values.

Theorem 1 (Shapley kernel). Under Definition 1, the spe-
cific forms of πx′ , L, and Ω that make solutions of Equation
2 consistent with Properties 1 through 3 are:

Ω(g) = 0,

πx′(z′) =
(M − 1)(

M
|z′|

)
|z′|(M − |z′|)

,

L(f, g, πx′) =
∑
z′∈Z

[f(h−1
x (z′))− g(z′)]2πx′(z′),

where |z′| is the number of non-zero elements in z′.

Proposed Framework for Adversarial
Classifiers

Overview
We discuss a novel adversarial framework to construct ad-
versarial classifiers that can fool post hoc explanation tech-
niques, such as LIME and SHAP (Slack et al. 2020). These
classifiers behave identically to a biased classifier f on real-
world data but produce innocuous explanations when probed
by explanation techniques. Below, we detail the framework’s
components: the setup and assumptions, the intuition behind
the approach, and the methodology for constructing adver-
sarial classifiers.

Preliminaries
Problem Setting Consider an adversary seeking to deploy
a biased classifier f to make critical decisions (e.g., parole,
bail, or credit). Customers and regulators, with black-box
access to f , use post hoc explanation techniques to assess
its fairness and readiness for deployment. If biases in f are
detected, then the adversary will not be able to deploy the
model. The adversary’s goal is to obscure f ’s biases from
these explanation techniques.



Input The adversary provides the following input:

• Biased classifier f , intended for deployment.
• Dataset X , sampled from the input distribution Xdist,

representing the real-world data on which f is applied.

Output The framework outputs an adversarial classifier
e, which:

• behaves identically to f on Xdist.
• appears unbiased when analyzed by explanation tech-

niques such as LIME or SHAP.

Intuition Behind the Approach
Post hoc explanation techniques, such as LIME and SHAP,
approximate the behavior of a black-box model within the
local neighborhood of a given data point by perturbing its
input features. However, such perturbed instances often lie
off-manifold or are out-of-distribution (OOD), making them
distinct from real-world data points.

To demonstrate this, we performed principal component
analysis (PCA) on a dataset combining original and per-
turbed instances generated by LIME. The visualization (Fig-
ure 1) revealed that the perturbed instances are clearly distin-
guishable from the original data. This insight suggests that
distinguishing between real and perturbed instances is feasi-
ble, enabling the adversary to construct a classifier that be-
haves differently on perturbed data, thereby deceiving post
hoc explanation techniques.

Figure 1: PCA applied to the COMPAS dataset (blue) as well
as its LIME style perturbations (red)

Framework Design
Adversarial Classifier Construction The adversarial
classifier e is designed as follows:

e(x) =

{
f(x), if x ∈ Xdist

ψ(x), otherwise

Here:

• f(x): Biased classifier behavior on real-world data.

• ψ(x): Unbiased classifier that makes predictions based
on features that are uncorrelated with sensitive attributes.

This construction ensures that e mimics f on real data
while exhibiting unbiased behavior on synthetic or perturbed
instances.

Detecting Out-of-Distribution (OOD) Samples To dif-
ferentiate between real and perturbed data, we train a classi-
fier is OOD as follows:
1. Perturb each instance x ∈ X to generate a corresponding

set Xp of perturbed instances.
2. Assign labels:

• False for real data (X).
• True for perturbed instances (Xp), unless they overlap

with X .
3. Train a classifier on X ∪Xp using these labels.

By accurately detecting OOD samples, is OOD enables
the adversarial classifier e to behave selectively, presenting
innocuous explanations for perturbed instances.

Implementation Highlights
• The perturbation strategy employed mirrors the methods

used by LIME and SHAP to ensure robustness against
common explanation techniques.

• The classifier is OOD is trained using standard off-the-
shelf supervised learning algorithms, providing flexibil-
ity in its implementation.

• Our approach requires only black-box access to the bi-
ased classifier f , making it broadly applicable across
domains where post hoc explanation techniques are uti-
lized.

Methodology, Results, and Discussion
Replication:
The authors conducted experiments using multiple datasets,
including COMPAS for recidivism risk prediction, Commu-
nities and Crime for violent crime prediction, and German
Credit for credit scoring. Each dataset includes a sensitive
feature: race in COMPAS and Communities and Crime, and
gender in German Credit. Following their proposed frame-
work, the authors constructed an adversarial classifier from
an existing biased classifier to achieve near-perfect fidelity
with respect to the biased classifier. Fidelity in this context
refers to the degree to which the adversarial classifier repli-
cates the decisions of the original biased classifier. They ap-
ply SHAP and LIME to the biased and adversarial classifiers
to explain their predictions. They found that while LIME
and SHAP accurately identify the sensitive feature as the
most important feature in the biased classifier, they deflect
the importance from the sensitive attribute to other uncorre-
lated features when applied to the adversarial classifier, con-
sistently across datasets. This finding is particularly signifi-
cant, as it demonstrates that LIME and SHAP explanations
can be systematically manipulated to obscure biased features
using adversarial techniques. In this project, we plan to repli-
cate this experiment, specifically focusing on the COMPAS



Figure 2: Replication of top 3 features on the COMPAS dataset

dataset, to validate the authors’ observations regarding the
feature importance shifts in adversarial classifiers.

In the prescribed framework to construct an adversarial
classifier, the authors used an Out-of-Distribution (OOD)
classifier to decide whether or not a given instance is per-
turbed or from the original distribution. The authors found
that the accuracy of the OOD classifier (measured by the
F1 metric) significantly impacts the feature attribution by
SHAP and LIME on the adversarial classifiers. The more ac-
curate the OOD classifier, the more likely SHAP and LIME
provide misleading explanations on the adversarial classi-
fiers. This is an important finding that we will replicate as it
forms the basis of the extension of our research project.

For our replication, we focus on two specific figures from
the original paper: Figures 6 and 7. Figure 6 represents how
well the adversarial models impact LIME and SHAP’s ca-
pabilities to determine bias. The contrast between the per-
formance of LIME and SHAP against the biased classifier
(on the left) as compared to the adversarial classifiers in the
middle and on the right is apparent and demonstrates the ef-
fectiveness of their adversarial models. Figure 7 ties in with
what was discussed in the previous paragraph, showing how
effective the adversarial models are at fooling LIME and
SHAP with varying accuracies of the OOD classifier. We
replicated these figures as they are crucial in determining
the effectiveness of our extension.

A majority of the code used to replicate the findings was
made publicly available by the authors of the original paper.
This included the OOD classifiers for both LIME and SHAP
as well as the biased and adversarial classifiers. Specifically,
the code that the original paper used to create the graphs in
figure 6 was available in whole. Using this code, we created
our adversarial classifiers for various accuracies (F1 Scores)
and tested how well they fooled LIME and SHAP respec-
tively. In the end, our results were near identical to the pa-
per’s (Figures 4 and 5), and we reinforced the results that
that the adversarial classifiers fooled LIME and SHAP with

Figure 3: Replicated LIME Sensitivity Analysis

Figure 4: Replicated SHAP Sensitivity Analysis



varying success over differing accuracies. Specifically, that
being that the ability of the adversarial model to fool LIME
sharply increased as the F1 score increased above 0.75 while
the ability of the model to fool SHAP increased compara-
tively gradually beginning around an F1 score of 0.5.

For replicating Figure 7, the code base provided by the
original paper’s authors supplied a baseline application to
the COMPAS dataset but necessitated slight modifications
to the code to calculate and output the values as needed for
replication. By using these modified outputs, we were able
to completely recreate the figure with a large degree of simi-
larity (Figure 2). These results reinforce the original paper’s
proposal that their adversarial classifiers were able to fool
LIME and SHAP into thinking a biased classifier was unbi-
ased and creates the foundation of our extension.

Testing Framework:
Extensions

1. Significance:
Understanding the rationale behind a model’s prediction
is often as critical as, if not more critical than, the model’s
prediction itself. This emphasis on interpretability is at
the heart of ExplainableAI (XAI) and fairness. In re-
sponse, various post-hoc interpretability methods have
been developed, with LIME and SHAP emerging as the
two of the most prominent techniques. Given that LIME
and SHAP are commonly employed to reveal the under-
lying vulnerabilities of complex models, it is also cru-
cial to examine potential weaknesses in these explanation
methods themselves. If adversarial examples can exploit
or bypass the interpretative frameworks of LIME and
SHAP, the reliability of these methods may be compro-
mised. By demonstrating that adversarial models can ma-
nipulate the explanations provided by LIME and SHAP,
this research exposes the shortcomings of SHAP and
LIME. These findings not only highlight the need to scru-
tinize these post-hoc explanation methods but also sug-
gest future directions for refining these methods by ad-
dressing their shortcomings. Strengthening these meth-
ods against adversarial manipulation will enhance their
reliability, advancing more robust and trustworthy inter-
pretability in machine learning.

2. Extension(s): For our extension, we propose develop-
ing SHLIME, a novel ensemble approach that combines
LIME and SHAP explanations to create a more robust ex-
planation method against adversarial attacks. Our moti-
vation stems from the paper’s key finding that LIME and
SHAP exhibit complementary vulnerabilities to Out-of-
Distribution (OOD) classifiers: SHAP is partially suscep-
tible to attacks from less accurate OOD classifiers (F1 ≈
0.45) but requires highly accurate classifiers for complete
deception, while LIME remains resilient until higher ac-
curacies (F1 ≈ 0.7) but becomes easily fooled beyond
that threshold (F1 > 0.8). See Figure 3 for reference.
We hypothesize that by intelligently combining these
methods, we can leverage their complementary strengths
to create an explanation method that maintains high reli-
ability across a broader range of OOD accuracies. The

Figure 5: BASIC SHLIME Sensitivity Analysis

challenge in combining LIME and SHAP is that their
outputs are represented differently — SHAP values lie
between 0 and 1, while LIME values can be unbounded
and negative. Therefore, whatever method we use to
combine them must preserve as much information as pos-
sible from both models. The most straightforward ap-
proach to doing so was simply multiplying the two val-
ues together, using the SHAP values as a scaling factor
for LIME’s output. Other methods for combining the two
models such as taking the weighted average of LIME and
SHAP values would result in losing some information
from either model, most starkly in cases where the out-
puts of LIME and SHAP diverged significantly.
We hypothesize that a successful implementation of
SHLIME should demonstrate enhanced robustness, re-
maining unfounded until higher F1 scores similar to
LIME, while showing a more gradual degradation in per-
formance with increase in F1 scores similar to SHAP.
This behavior contrasts favorably with the more abrupt
or earlier vulnerability transitions of individual methods.
We investigate the performance of BASIC SHLIME, an
ensemble method that returns the LIME value multiplied
by the SHAP value for each feature.

Conclusions

As shown in Figure 5, our experimental results demon-
strate that this simple yet effective approach successfully
improves upon both methods. BASIC SHLIME maintains
strong explanation accuracy (consistently above 0.8) for a
wider range of F1 scores (similar to LIME), only begin-
ning to show significant degradation around F1 ≈ 0.75.
Even as the classifier accuracy increases beyond this thresh-
old, SHLIME exhibits a more gradual decay in performance
(similar to SHAP). By leveraging the complementary char-
acteristics of SHAP and LIME, BASIC SHLIME provides
more reliable explanations than SHAP and LIME even as
adversarial models become more sophisticated.



Future Work

The natural path to take after this research would be to cre-
ate a proper OOD classifier for our potential SHLIME mod-
els. While our results using both the LIME and SHAP OOD
classifiers are promising, the strength of our results is limited
by the inability to truly compare its robustness on a fair scale
in comparison to LIME and SHAP individually. This was a
problem that we initially intended to include within this re-
search project, but quickly realized its scale and complexity
because this would vary immensely from prior research due
to our methods combining both LIME and SHAP. Moreover,
each different possible option for SHLIME would necessi-
tate a completely different OOD classifier.

Secondly, the focus of this research was mainly on the
robustness of our SHLIME implementation, specifically to
these kinds of adversarial attack. However, it is still impor-
tant to consider how well it performs at its intended task
of interpretability compared to LIME and SHAP. In future
research, it would be useful to see how SHLIME performs
in comparison to both LIME and SHAP on a wide array
of datasets. Ideally, SHLIME would perform comparably or
even better than SHAP, but by introducing LIME to increase
robustness, there may potentially be some performance de-
crease.

Another avenue for future work would be to explore other
ways of combining the output of LIME and SHAP. One
method is mixture of experts: an approach that divides a
model into several sub-networks ( or ”experts”), each spe-
cialising in a different subset of the input data. For the pur-
pose of this project, one set of experts can specialise in
LIME while the other specialises in SHAP. The model’s re-
sult will then be the combined output of the LIME experts
and the SHAP experts.

Societal Impact

The societal impact of the paper is profound, as it directly
addresses the integrity and fairness of machine learning
models deployed in critical sectors such as healthcare, fi-
nance, and criminal justice. Black-box models, which are
increasingly used to make high-stakes decisions in these ar-
eas, often operate without sufficient transparency, raising
concerns about biases, fairness, and accountability. This re-
search highlights vulnerabilities in popular post hoc expla-
nation methods like LIME and SHAP, revealing how eas-
ily these models can be manipulated, leading to potentially
harmful consequences when they are used to inform deci-
sions about individuals’ lives. By uncovering these weak-
nesses, the paper emphasizes the need for more robust ex-
planation techniques, pushing for a more rigorous approach
to model testing and evaluation. The ultimate goal is to
build models that are not only accurate but also equitable
and transparent, ensuring that they do not perpetuate exist-
ing biases or make decisions based on harmful stereotypes.
By advocating for the development of higher-quality test-
ing methods, this research aims to improve decision-making
processes in sensitive fields, reducing the risks of unjust out-
comes and enhancing public trust in AI systems.
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Appendix

Access to our experiment repository:
https://github.com/eduguet/shlime



Figures from Slack et al.

Figure 6: Reference graph of LIME and SHAP being fooled
by biased OOD classifiers

Figure 7: COMPAS: % of data points for which each feature
shows up in top 3 (according to LIME and SHAP’s ranking
of feature importances) for different classifiers


