MATH 562/I0E 511: Final Project

Hugh Van Deventer
hughv@umich.edu
Itamar Pres
presi@umich.edu

University of Michigan — Winter 2025

1 Algorithms

1.

GradientDescent (Backtracking Line Search):

This is a first-order line search method. It computes the step direction as the negative gra-
dient (pr = —V f(xk)). The step length ay, is determined using a backtracking procedure:
starting with an initial guess (e.g., ax = 1) and iteratively reducing it until the Armijo
sufficient decrease condition (f(zx + crpr) < f(xx) + craxVf(zx) pr) is satisfied. It does
not explicitly modify computations for nonconvexity but relies on finding decrease along
the negative gradient direction to converge towards a stationary point.

. GradientDescentW (Weak Wolfe Line Search):

Also a first-order line search method, using the negative gradient pp = —Vf(zy) as
the search direction. The step length «j is chosen to satisfy the weak Wolfe condi-
tions. These consist of the Armijo sufficient decrease condition (f(zy + agpr) < f(xk) +
c1,V f(zx)Tpr) and a curvature condition ensuring sufficient slope increase (V f(xy, +
arpr) T ok > oV f(zx) pr), where 0 < ¢; < c2 < 1. This aims for a more effective step
length than simple backtracking. Nonconvexity is handled similarly to the backtracking
version.

Newton (Modified, Backtracking Line Search):

This is a second-order line search method. The search direction py is computed by solving
the Newton system Hyppp = —V f(xy), where H, = V2f(x;) is the Hessian matrix. To
handle nonconvexity, if Hy is not positive definite, it is modified by adding a multiple of
the identity matrix, Hy < Hy + 1, to ensure the resulting matrix is positive definite, thus
guaranteeing py is a descent direction. The step length oy is then found via backtracking
search (Armijo condition).

. NewtonW (Modified, Weak Wolfe Line Search):

A second-order line search method similar to the modified Newton with backtracking. It
computes the step direction by solving Hypr = —V f(x), modifying the Hessian Hy if
necessary to ensure positive definiteness and a descent direction. The step length ay is
determined by satisfying the weak Wolfe conditions (sufficient decrease and curvature:

V f(zk + cwpr) pe > 2V f (z) i)

. TRNewtonCG (Trust Region Newton, CG Subproblem Solver):

This is a second-order trust region method. At each iteration k, it constructs a quadratic
model mg(p) = f(ar) + Vf(zr)Tp + %pTHkp using the exact Hessian Hy. The step pg
is found by approximately minimizing my(p) within a trust region defined by ||p|| < Ag,

10.

where Aj is the trust region radius. This subproblem is solved using the Steihaug-CG
method. CG inherently handles potential nonconvexity (indefinite Hy) by detecting nega-
tive curvature or stopping at the trust region boundary. The radius Ay is adjusted based
on the agreement between the model and the actual function reduction.

TRSR1CG (Trust Region SR1, CG Subproblem Solver):

This is a quasi-Newton trust region method. It employs the Symmetric Rank-1 (SR1)
update formula to maintain an approximation Bj to the Hessian matrix. The step pg
is computed by approximately solving the trust region subproblem minmy(p) = f(xy) +
Vf(z)Tp + %pTka subject to ||p|| < Ak, using the Steihaug-CG algorithm. The SR1
update does not guarantee By, is positive definite, but the CG subproblem solver is equipped
to handle indefinite matrices, making the method suitable for nonconvex problems without
explicit Hessian modification.

BFGS (BFGS Quasi-Newton, Backtracking Line Search):

A popular quasi-Newton line search method. It uses the Broyden—Fletcher—Goldfarb—Shanno
(BFGS) update formula to iteratively build an approximation Hy = B,;l to the inverse
Hessian. The search direction is computed as p, = —HV f(x). The BFGS update pre-
serves positive definiteness if the initial matrix H(is positive definite and the curvature
condition y,{sk > 0 holds (where s = xx4+1 — 2 and yp = Vf(xg41) — Vf(xg)). A sim-
ple backtracking line search finds the step length ay. If the curvature condition fails, the
update may be skipped.

BFGSW (BFGS Quasi-Newton, Weak Wolfe Line Search):

This quasi-Newton line search method also uses the BFGS update to approximate the
Hessian (or its inverse) and computes the step direction pr = —HiV f(xg). It employs
a weak Wolfe line search to determine the step length «j. Satisfying the weak Wolfe
conditions (specifically the curvature condition V f (zx +awpr) pr > c2V f(2)T pi) ensures
that the curvature condition y,{sk > 0 is met. This guarantees that the BFGS update
preserves the positive definiteness of the Hessian approximation Hj, making the algorithm
robust in handling nonconvexity by ensuring descent directions are generated.

DFP (DFP Quasi-Newton, Backtracking Line Search):

An earlier quasi-Newton line search method. It uses the Davidon—Fletcher—Powell (DFP)
update formula, which primarily approximates the inverse Hessian Hy. The step direction
is pr = —HpVf(z). Similar to BFGS, the DFP update preserves positive definiteness
under the curvature condition ykTsk > 0. Step length o is found via backtracking. DFP is
generally considered less numerically stable and efficient than BFGS in modern practice.

DFPW (DFP Quasi-Newton, Weak Wolfe Line Search):

This quasi-Newton line search method uses the DFP update for the inverse Hessian ap-
proximation (pr = —HiV f(zx)). It employs a weak Wolfe line search for the step length
ay. As with BFGSW, the weak Wolfe conditions ensure the curvature condition ygsk >0
holds (via the curvature condition V f(zx + axpr) pr > c2V f(x1)T pr), guaranteeing that
the DFP update maintains positive definiteness.

2 Default Values

Table 1: Simplified Default Optimization Parameters

Parameter Gradient Modified Trust Quasi-Newton
Descent Newton Region (BFGS/DFP)
term_tol 10-° 10°° 10°° 1079
max_iterations 103 103 103 103
alpha 1 1 N/A 1
tau 0.5 0.5 N/A 0.5
c_1_1s 1074 1074 N/A 1074
c_2_1s 0.9 0.9 N/A 0.9
beta (Newton regularize) N/A 10-6 N/A N/A
c_1_tr N/A N/A 1073 N/A
c_2_tr N/A N/A 0.75 N/A
term_tol_CG N/A N/A 10710 N/A
max_iterations_CG* N/A N/A n* N/A
epsilon_sy N/A N/A 1075 (SR1) 1076

Notes: (SR1) applies only to TR-SR1-CG variant. N/A: Not Applicable. *Default for
max_iterations_CG is equal to the dimension of the input.

3 Performance

100

Performance Profile (Iterations vs. % Problems Solved, Max Iterations = 1000)

80 4

60 |

A
40 4|1

Percentage of Problems Solved (%)

7 rf‘ﬁ'—’ B &

PP

|
B e I e e It B e e ail T S SRR S|

Ak — ke — ek — ke — ik — o
|
!
© A A A A R e
i :
U ST SN NP GRPUP I SUPASP P OE-
: —e— BFGS
BFGSW
- DFP
-4 DFPW
GradientDescent,
GradientDescentW
Newton
~¥- NewtonW
TRNewtonCG
- TRSR1CG

T
300
Iterations

Figure 1: Performance Profile

Table: Iterations Summary

method BFGS BFGSW DFP DFPW GradientDescent, GradientDescentW Newton NewtonW TRNewtonCG TRSR1CG
problem
datafit_2 14 14 79 60 530 530 6 6 7 27
exponential_10 19 20 | 1000 | 1000 27 27 13 13 13 16
exponential_100 10 9 | 1000 [1000 21 17 13 13 14 29
genhumps_5 57 46| 1000 | 1000 130 143 97 40 83 130
quad_1000_10 31 31| 370 370 116 116 1 1 9 9
quad_1000_1000 352 352 | 1000 1000 1000 1000 1 1 103 103
quad_10_10 26 26 223 223 105 105 1 1 5 5
quad_10_1000 56 56 | 1000 1000 1000 1000 1 1 14 14
quartic_1 3 3 3 3 2 2 2 2 3 4
quartic_2 24 24 32 | 1000 6 6 38 38 38 17
rosenbrock_100 7 7 | 1000 [1000 26 28 46 46 1000 1000
rosenbrock_2 33 33 23 22 1000 1000 20 20 30 94
Teble: Function Evaluations Summary
method BFGS BFGSW DFP DFPW GradientDescent, GradientDescentW Newton MNewtonW TRNewtonCG TRSR1CG
problem
datafit 2 | 6982 7019 | 7228 (7400 3438 6876 6889 6902 6917 6945
exponential_10 3N 362 | 36300 | 65252 69 138 182 226 253 270
exponential_100 260 288 | 36058 | 64877 45 89 133 177 206 236
genhumps_5 | 1613 1744 | 37677 | 66624 376 837 1052 1200 1343 1474
quad_1000_10 564 627 | 1368 | 2109 233 466 469 472 491 501
quad_1000_1000 | 6206 6911 | 8912 [10913 2001 5184 5187 5190 5397 5501
quad_10_10 498 551 998 | 1445 21 422 425 428 439 445
quad_10_1000 | 5359 5472 | 7473 | 9474 2001 5196 5199 5202 5231 5246
quartic_1 39 46 £ 60 5 10 15 20 27 32
quartic_2 548 659 860 | 3014 94 188 265 342 419 437
rosenbrock_100 2882 2906 | 14429 | 41199 279 584 683 782 1857 2858
rosenbrock_2 | 22044 | 22130 | 22210 | 22289 10834 21717 21765 21813 21863 21958
Table: Gradient Evaluations Summary
method BFGS BFGSW DFP DFPW GradientDescent, GradientDescentW Newton MNewtonW TRNewtonCG TRSR1CG
problem
datafit_2 | 1652 1681 | 1761 1882 531 1592 1599 1612 1620 1637
exponential_10 174 216 | 1217 2220 28 a3 97 124 138 154
exponential_100 | 145 165 | 1166 | 2174 22 58 72 99 114 134
genhumps_5 | 809 905 | 1206 | 2909 131 421 519 611 671 751
quad_1000_10 | 407 470 | 8 1582 117 350 352 355 365 375
quad_1000_1000 | 3765 4470 | 5471 | 7472 1001 3199 3201 3204 3308 3412
quad_10_10 361 414 638 1085 106 317 319 322 328 334
quad_10_1000 | 3293 3406 | 4407 6408 1001 3201 3203 3206 3221 3236
quartic_1 29 36 40 47 3 8 1 16 20 25
quartic 2 | 218 267 | 300 | 2298 7 20 59 136 175 193
rosenbrock_100 | 320 335 | 1336 | 9127 27 85 132 225 300 312
rosenbrock 2 | 3173 3240 | 3264 | 3310 1001 3003 3024 3065 3085 3139
Table: CPU Time (seconds) Summary
method BFGS BFGSW DFP DFPW GradientDescent, GradientDescentW Newton MNewtonW TRNewtonCG TRSR1CG
problem
datafit 2 | 0.001s | 0.002s 0.005s 0.004s 0.035s 0.048s 0.001s 0.001s 0.001s 0.001s
exponential_10 | 0.001s [0.002s 0.381s 0.330s 0.001s 0.001s 0.017s 0.002s 0.002s 0.002s
exponential_100 [0.005s | 0.005s 1.359s 1.062s 0.002s 0.003s 0.004s 0.004s 0.003s 0.005s
genhumps_5 [0.006s | 0.006s 0.578s 0.458s 0.008s 0.015s 0.024s 0.012s 0.012s 0.020s
quad_1000_10 | 6.146s | 7.039s [73.934s | 89.337s 12.699s 17.035s 0.296s 0.325s 1714s 1.259s
quad_1000_1000 | 65.551s | 79.030s | 165:912s | 196.274s 116.630s 201.013s 0.282s 0.311s 18.646s 11.511s
quad_10_10 [0.070s | 0.074s 0421s 0.421s 0.241s 0.329s 0.005s 0.009s 0.016s 0.008s
quad_10_1000 | 0.078s | 0.118s 1.396s 1.870s 1.390s 2.468s 0.003s 0.003s 0.032s 0.019s
quartic_1 | 0.000s | 0.001s 0.000s 0.000s 0.000s 0.001s 0.000s 0.000s 0.001s 0.000s
quartic.2 | 0.003s | 0.003s 0.004s 0.081s 0.001s 0.001s 0.005s 0.007s 0.007s 0.002s
rosenbrock_100 [0.006s 0.006s 1411s 3.538s 0.025s 0.030s 0.032s 0.042s 0.207s 0.142s
rosenbrock_2 | 0.002s 0.002s 0.002s 0.001s 0.065s 0.073s 0.001s 0.002s 0.002s 0.005s

Figure 2: Table: Summary of Results (red means convergence criterion not met)

4

4 Discussion

Newton (with both line searches) is the closest to "consistently" being the best, with BFGS
and the trust region methods being close seconds. Newton converged on every problem and was
among the fastest other than for genhumps 5 and rosenbrock 100.

Distinct performance differences arose on more challenging problems. Gradient Descent con-
sistently required significantly more iterations and CPU time, particularly struggling with ill-
conditioned quadratics and complex functions like Rosenbrock, often hitting the iteration limit
due to its slow linear convergence rate. DFP variants also frequently underperformed com-
pared to BFGS, taking substantially more time and iterations, and hitting the iteration limit
on ill-conditioned quadratics and non-linear functions. This aligns with the known theoretical
limitations of DFP, which can be less robust and efficient than BFGS, especially when dealing
with ill-conditioning or requiring many iterations. Even robust methods like TRNewtonCG oc-
casionally hit iteration limits on difficult problems like Rosenbrock, highlighting the inherent
challenge posed by some optimization landscapes regardless of the algorithm used.

4.1 Algorithm of choice

We select NewtonW as the algorithm of choice, balancing observed performance metrics effec-
tively. Its primary strength lies in its rapid convergence, consistently requiring significantly fewer
iterations than other methods like Gradient Descent or DFP, particularly on quadratic problems,
by leveraging second-order information. This rapid convergence in iterations often translated to
competitive or superior overall CPU times, despite the higher computational cost per iteration
associated with Hessian calculation and processing. While Quasi-Newton methods like BFGS
and TRSR1CG sometimes achieved faster wall-clock times on larger problems due to their lower
cost per iteration, Modified Newton demonstrated superior robustness in these tests, successfully
solving all problems without hitting iteration limits. Therefore, given its exceptional performance
in minimizing iterations and its reliability across the tested problems, Modified Newton repre-
sents the most compelling choice when Hessian information is available and computationally
manageable.

5 The Big Question

As the vibecoders, we decided to investigate the big question of “How does memory affect the
performance of quasi-Newton methods?” Memory refers to the number of curvature pairs {s,y}
pairs we are storing to update our Hessian. We investigate the trade-offs between storing more
curvature pairs and the resulting quality of the Hessian approximation on our problems. Specifi-
cally, we run L-BFGS with backtracking with memory sizes of [1,3,5, 7,10, 15, 20] on the project
problems and record iteration history.

5.1 Quadratic Functions

On the Quadratic Function, all L-BFGS methods achieved essentially the same function value.
Thus, we will only view iteration vs memory size plots as the same trends are found for the
number of f-evals and g-evals vs memory size.

From Figure 3, we see that performance gain from increasing memory is stronger when the
condition number is higher. For quad 10 10 and quad 1000 10 we see that there is not much
change from the graph of iteration reduction when we go from n = 10 to n = 1000. The greatest
performance gain is from m = 1 to m = 3 and then we quickly see diminishing gains. We see the
importance of larger memory in quad 1000 1000, where we obtain strong performance gains

quad_10_10 quad_10_1000

iterations vs. Memory Size iterations vs. Memory Size
50 1000
% 800
0
40)
é 5 600
g E
L35 2
400
30
200
25
25 50 75 10.0 125 15.0 175 2.0 25 50 75 10.0 125 15.0 175 20.0
Memory Size (m) Memory Size (m)
quad_1000_10 quad_1000_1000
iterations vs. Memory Size iterations vs. Memory Size
1000
55 900
50 800
) @
5 5 700
g% &
2 2 600
40
500
35
400
30
25 50 75 10.0 125 15.0 175 200 25 50 75 10.0 125 15.0 175 200
Memory Size (m) Memory Size (m)

Figure 3: L-BFGS with varying memory sizes on the Quadratic problems

at m = 10. This highlights that for ill-conditioned quadratic problems, investing in larger mem-
ory sizes for L-BFGS yields substantial performance improvements, whereas well-conditioned
problems benefit little beyond minimal memory.

5.2 Quartic Functions

On the quartic_ 1 function, all L-BFGS methods converged in 3 iterations. There was no sig-
nificant different across all memory sizes, likely because the quartic component has a very small
constribution (o = 10~%), meaning that the curvature (captured by the Hessian) plays little role
in minimizing the function.

L-BFGS Performance vs. Memory Size for Problem: quartic_2

f_final vs. Memory Size iterations vs. Memory Size
2x10”
2
— 20
)
5 3
g 2 18
i=J =}
2 5
T ex10" g8
-! 14
”
4%10
12
3x10”"
25 50 75 10.0 125 15.0 175 200 25 50 75 10.0 125 15.0 175 200
Memory Size (m) Memory Size (m)
f_evals vs. Memory Size g_evals vs. Memory Size
24
160 »
150 20
%) 2
® [
o 140 5 18
n—l (=]
16
130
14
120
12
25 5.0 75 10.0 125 15.0 17.5 2.0 25 50 75 10.0 125 15.0 17.5 2.0
Memory Size (m) Memory Size (m)

Figure 4: L-BFGS with varying memory sizes on the quartic 2 problem

Conversely, for quartic 2 where the large 0 = 10* makes the quartic term dominant, Figure
4 reveals a strong and complex dependence on memory size. Increasing memory leads to signif-
icantly more iterations and gradient evaluations, yet paradoxically fewer function evaluations,
suggesting intricate interactions between the Hessian approximation quality and the line search
performance on this highly non-quadratic problem.

5.3 The Rosenbrock Problem

1e-11 f_final vs. Memory Size iterations vs. Memory Size
35 40
3.0 38
25 3%
0
gu
15 2
23
10
30
05
28
0.0
25 50 7.5 10.0 125 150 175 200 25 5.0 75 10.0 125 150 17.5 2.0
Memory Size (m) Memory Size (m)

Figure 5: L-BFGS with varying memory sizes on the Rosenbrock problem (n=2)

For the 2-dimensional Rosenbrock problem, Figure 5 shows significant variability in perfor-
mance depending on the L-BFGS memory size m. Both the final function value and the number

of iterations behave non-monotonically as m increases. Notably, memory sizes m = 3,7,15, 20
successfully converge to the minimum with near-zero final function values, while m = 1,5, 10
terminate significantly further away, despite requiring a similar number of iterations in some
cases (e.g., compare m = 5 and m = 7). The fastest convergence to the minimum occurred with
m = 3 (27 iterations).

This contrasts sharply with the rosenbrock 100 results (not shown), where all memory sizes
yielded identical performance, converging in only 7 iterations but to a point far from the true
minimum (f & 4.5). This suggests the rosenbrock 100 run terminated prematurely based on
gradient tolerance, likely before the effects of different memory sizes could manifest, unlike the
more revealing optimization process in the 2D case which clearly shows sensitivity to the memory
parameter.

5.4 Exponential Functions

1e-9-2 055728e—1 f_final vs. Memory Size iterations vs. Memory Size
55 23
6.0
2
6.5
2
T -7.0 <}
,_E‘ § 21
~'75 s
-8.0 20
-85
-9.0 19
25 50 75 10.0 125 15.0 17.5 20.0 25 50 75 10.0 125 15.0 175 2.0
Memory Size (m) Memory Size (m)

Figure 6: L-BFGS with varying memory sizes on the exponential 10 problem

For the exponential 10 problem, Figure 6 shows relatively consistent performance across
different L-BFGS memory sizes m, with only mild variability. The final function value remains
nearly constant and very close to the true minimum for all tested values of m, indicating that
memory size has little impact on solution accuracy. However, the number of iterations needed
to converge exhibits non-monotonic behavior as m varies.

Specifically, iteration counts peak around m = 10 before dropping sharply for larger memory
sizes (m = 15,20), where convergence occurs in fewer than 20 iterations. Nonetheless, because
the final function values are uniformly excellent across all settings, the effect of m is primar-
ily on efficiency rather than solution quality for this problem. Overall, L-BFGS demonstrates
robustness to memory size variation on the exponential 10 function.

We do not include plots for exponential 100 for similar reasons as rosenbrock 100. Per-
formance metrics were constant across all memory sizes, converging rapidly and precisely in 10
iterations. Thus, while L-BFGS successfully minimized the function value for both dimensions
across tested memory sizes, the 10-dimensional problem reveals sensitivity to m in terms of
computational effort (iterations) and final precision achieved, effects not observed in the higher-
dimensional run likely due to its structure or rapid convergence characteristics.

5.5 Data Fit Problem

From Figure 7, we observe that all tested memory sizes successfully converge to the minimum
function value, achieving f;nq on the order of 10—, However, significant differences emerge in
efficiency and final gradient precision. The m = 1 case is notably inefficient, requiring consider-
ably more iterations (~ 26) and evaluations (~ 140) while achieving relatively poor final precision
(norm_gtinal = 1072%). Memory sizes m > 3 are much more efficient in terms of iterations and

1e-11 f_final vs. Memory Size iterations vs. Memory Size

35 %
30 24
25
2
@
3 20 g
c =20
b—l o
w15 2
=1
10
05 16
0.0 14
25 50 75 10.0 125 15.0 175 2.0 25 50 75 10.0 125 15.0 175 200
Memory Size (m) Memory Size (m)
f_evals vs. Memory Size norm_g_final vs. Memory Size
140
120 @ 10—5
[
&
o 100 g
] -
G z
! 80 o
i
E -6
60 g 10
c
40
25 50 75 10.0 12.5 15.0 175 20.0 25 50 75 10.0 125 15.0 175 200
Memory Size (m) Memory Size (m)

Figure 7: L-BFGS with varying memory sizes on the Datafit-2 problem

evaluations (13-15 iterations, ~ 40 f evals). Among these efficient runs, m = 3,7,10 demon-
strate superior final precision according to the gradient norm, with m = 10 achieving the lowest
value (near 10~%?). Interestingly, m = 5 and the larger memory sizes m = 15,20, despite their
efficiency in iteration counts, result in substantially worse final precision (norm_ g fina =~ 10729),
similar to m = 1. Therefore, for the Datafit 2 problem, while nearly all memory sizes find the
minimum value, intermediate memory sizes (m = 7 or m = 10 appear best here) offer the optimal
combination of low iteration/evaluation counts and high final precision in the gradient norm.

5.6 Genhumps Problem

f_final vs. Memory Size iterations vs. Memary Size

60
55

z

8

@ 2 50

=] 2

= s

§ & 45

j 10
40
35

25 5.0 75 10.0 125 15.0 17.5 2.0 25 50 75 10.0 125 15.0 17.5 200
Memory Size (m) Memory Size (m)

Figure 8: L-BFGS with varying memory sizes on the Genhumps 5 problem

From Figure 8, we see Genhumps 5 performance depends strongly and non-monotonically
on memory size m. Both the final function value and iteration counts vary significantly. Memory
m = 10 achieved the best ff;,q by an order of magnitude compared to other values, but required
relatively high iterations (= 53). In contrast, m = 5 was fastest (=~ 34 iterations) but resulted
in a worse ffinq. This indicates performance on the complex Genhumps landscape is highly
sensitive to m, with m = 10 being optimal for solution quality among tested values.

5.7 Conclusion

This investigation into the L-BFGS memory parameter m reveals that its impact on performance
is highly dependent on the specific optimization problem’s characteristics, including condition-
ing, non-linearity, and potentially dimension interacting with convergence behavior. For convex
quadratic problems, increased memory primarily benefits ill-conditioned cases by significantly
reducing iterations, while well-conditioned problems show diminishing returns beyond small m.
On non-quadratic problems, the behavior varies widely: some functions with strong non-linearity
or complex landscapes (Genhumps 5, Datafit 2, Exponential 10, Rosenbrock 2, Quartic 2)
exhibit significant sensitivity, often with non-monotonic performance where intermediate mem-
ory sizes frequently provide the best results and large m can sometimes be detrimental to solution
quality or precision. Conversely, certain problems, including the near-quadratic Quartic_1 and
high-dimensional runs that converged very rapidly (Rosenbrock 100, Exponential 100), showed
minimal sensitivity to memory size within the tested range, likely because the optimization pro-
cess concluded before differences in the Hessian approximation quality could substantially alter
the outcome. Ultimately, while larger memory theoretically allows for better Hessian approx-
imations, potentially improving convergence, this benefit must be weighed against increased
computational cost per iteration and does not guarantee better practical performance; no single
m value is universally optimal, but moderate values often represent a reasonable starting point,
with problem-specific tuning potentially offering significant gains.

6 Comments

This project was fun and provided valuable hands-on experience implementing and comparing
a range of continuous optimization algorithms. Based on a combination of performance, ease of
implementation, and parameter tuning effort, the Modified Newton method with a Weak Wolfe
line search stands out as the overall "winner" for this problem set. Coding the Modified Newton
logic, particularly leveraging a completed Cholesky factorization to handle potential indefinite-
ness and efficiently solve the Newton system, proved relatively straightforward. Implementing
the Weak Wolfe line search was simple, and importantly, it required minimal tuning, as standard
parameters recommended in literature (e.g., by Nocedal & Wright) yielded consistently good per-
formance across the test problems. While Gradient Descent was simpler to code, its performance
was generally poor. Trust-region methods offered strong performance but involved greater im-
plementation complexity, particularly managing the subproblem solve. Quasi-Newton methods
struck a balance but didn’t consistently outperform the well-implemented Modified Newton in
these tests.

For non-experts or those needing a quick implementation, basic Gradient Descent (accepting
its slow convergence) or perhaps a standard Newton method (if the Hessian is easily available and
well-behaved) might be simplest. However, for expert coders seeking high performance, Modified
Newton (potentially upgrading to a Strong Wolfe search or using a Trust-Region approach like
TRNewtonCG) is highly recommended when second derivatives are computationally feasible. If
coding second derivatives is impractical or too costly, robust Quasi-Newton methods like BFGS
or TRSR1CG become the algorithms of choice, offering a good compromise between performance
and computational demands.

10

