
Fundamentals
Norms

Singular Value Decomposition (SVD)
Theorems

Low Rank Approximations
Theorems

Induced matrix norms
||A||1: maximum column sum of A

pf. Show the norm is bounded above by max column sum, use ej to show
equality.

||A||2: Largest singular value
||A||∞: maximum row sum of A

Same idea as with 1 norm

||A||F : The square root of the sum of the squared singular values.
2-norm and F-norm are invariant under unitary multiplication

Every matrix has an SVD, singular values are uniquely determined. If A is square and
singular values are distinct, then left and right singular vectors are unique up to
complex signs.
The nonzero singular values of A are the square roots of the nonzero singular values
of A∗A

For square A, its determinant is the product of singular values (which is the product
of eigenvalues)

A = ∑r
j=1 σjujv

∗
j

For any 0 ≤ ν ≤ r, def Aν = ∑ν
j=1 σjujv

∗
j , if ν = min(m,n), we can define σν+1 = 0.

Then we have ||A − Aν||2 = inf ||A − B||2 = σν+1

Aν minimizes the error in the Frobenius norm where the error is the sqrt of the sum
of the remaining squared singular values.



QR Factorization and Least Squares
Projectors

QR Factorization
Consider m x n matrix A
Reduced QR: Q̂ ∈ Cm×n, R̂ ∈ Cn×n

Full QR: Q ∈ Cm×m, R ∈ Cm×n

Gram-Schmidt Orthogonalization presents a way to form reduced QR

Gram Schmidt Orthogonalization
We can think of GS as each iterations projecting the column aj into the space orthogonal
to the previous collected q's.

A square matrix P is a projector is P 2 = P . AKA Idempotent
We can think of a projector as splitting the space into two.
Orthogonal projectors

hermitian projectors

Given matrix with orthonormal columns Q̂n we have P = Q̂nQ̂∗
n

Rank 1 projector: P = qq*

Like successive orthogonalization

Every matrix A ∈ Cm×n where m > n has a full QR decomposition (hence reduced)
Every full rank A has a unique QR factorization if positive diagonals.



Algorithm 7.1 computes one large projection of rank m - (j-1).

In MGS, you are projecting the rest of the vectors into the space orthogonal to the qs you
have already formed.
This can be viewed as "triangular orthogonalization" where each iteration multiplies on the
right by an upper triangular matrix to form Q. This bears a close resemblance to gaussian
elimination.

Householder Triangularization



The aim of householder triangularization is to successively form an upper triangular matrix
through a series of orthogonal transformations. At iteration k, we want to introduce zeros
below the k-th diagonal entry.

Better of two reflectors: we want to reflect over the vector not too close to itself

At iteration k:
x = Ak:m,k (the vector of the kth column from rows k:m)
v = −sign(x1)||x||e1 − x or v = sign(x1)||x||e1 + x

F = I − 2 vv∗

v∗v

Conditioning and Stability
Condition number of matrix vector product: ||A||

||x||
||Ax||

Condition number of Matrix: K(A) =||A||||A−1||

Systems of Equations
Gaussian Elimination
LU Factorization:
A = LU by triangular triangularization

Let A be an m x m square matrix (can be done for nonsquare but rare)
Lm−1 … L2L1A = U

Where L are lower triangular and U is upper triangular. Then our LU decomposition
becomes
A = LU where L = L−1

1 L−2
2 … L−1

m−1



At step k (starting at 1), we are trying to make the k-th column of U 0 below the diagonal

Two strokes of luck:

1. L−1
n = Ln with sub diagonal entries negated

2. L is just the unit lower triangular matrix with the nonzero columns of L−1
1 L−2

2 … L−1
m−1

inserted into the right places.



Instability without pivoting
if a pivot has an extremely small number, dividing by this pivot can introduce a lot of
numerical instability

Pivoting
Pivoting allows us to address the instability of GE.
We generally want to select pivots as the largest number from set of candidates
At iteration k

Partial pivoting
Select the largest subdiagonal entry in column k. This is equivalent to performing regular
LU on a permutated matrix PA.
PA = LU
Why? Our third stroke of luck
Selecting the largest subdiagonal entry at interation k looks like

LnPn … L1P1A = U

To show an example of our third stroke of luck, consider

L3P3L2P2L1P1A = U

This can be reordered as

L′
3L′

2L′
1P3P2P1A = U

Where

L′
n = Ln,  L′

2 = P3L2P −1
3 ,  L′

1 = P3P2L1P −1
2 P −1

3

We move pivot candidate xij into the (k, k) position by permuting the rows and
columns



Of course, since we do not know P ahead of time, we do not perform standard gaussian
elimination on PA.

Questions: How to recover the original LU after pivoting?

Stability of GE
While proven to be both forward and backward stable, the bounds that guarantee stability
are batshit insane (2m). It turns out in practice, the growth factors that contribute to this
bound are never seen in reality. This requires a very special column space of A an L.
Growth factor:



Cholesky Factorization
How about LU for symmetric matrices. Given hermitian, positive definite A ∈ Cmxm, we
want to find upper triangular matrix R s.t A = R∗R



Theorems:

Every hermitian positive definite matric has a Cholesky factorization
Always stable, subtleties in standard Gaussian elimination disappear.

matrix norm of R is bounded above by A

Implies there is always a stable way to solve hermitian positive definite systems of
equations Ax = b



Eigenvalues
Eigenvalue Problems
Unitary Diagonalization:

Schur Factorization:
THM: Every square matrix A has a schur factorization A = QTQ∗, where Q is orthogonal
and T  is upper triangular.
Steps to find Schur factorization:

Overview of Eigenvalue Problems
The algebraic nature of eigenvalue problems (which can be represented as root finding
problems and vice versa) tell us that there can be no finite method for finding exact
solutions. Thus, we are left to the family of iterative methods.

A matrix A is unitarily diagonalizable iff it is normal
A matrix is normal iff A∗A = AA∗



Two phases of eigenvalue computation:

Reduction to Hessenburg or Tridiagonal form
Our goal is to introduce zeros below the main subdiagonal. It is important to remember we
are trying to construct a similar matrix, that is, the hessenburg form must have have the
same eigenvalues as A if we want to find the eigenvalues of A. Thus, any transformation
we apply to A on the left must also be applied on the right: H = QAQ∗

If we naively apply householder reflector Q1 from QR, we lose all the zeros introduced by
left multiplication when we apply Q1 to the right. .

A good idea is to apply a reflector that leaves the first row/column unchanged.
We can think of our first reflector as the following block matrix:

where F1 is the householder reflector for the (m-1) vector A2:m,1

As we iterate, the identity matrix in the top left gets larger and our bottom right reflector
gets smaller.

1. Reduction to Hessenburg form (zeros below first subdiagonal)
O(m3)

2. Iterative portion
- Generally convergence to machine precision is achieved in O(m) iterations.
- Each iteration is at cost O(m2)

- Total requirement is O(m3) flops
Without reduction to hessenburg form, reach iteration would involve a full matrix,
requiring O(m3) work. NOT GOOD
If A is Hermitian, the Hessenburg form is tridiagonal: O(m)

⎡⎢⎣1 0 0 0

0

0 F1

0

⎤⎥⎦



Stability: Backwards stable

Rayleigh Quotient, Inverse Iteration
IN THE FOLLOWING 4 LECTURES, WE RESTRICT OURSELF TO THE STUDY OF
REAL, SYMMETIC MATRICES. A ∈ Rm×m

A priori, A has a complete set of orthogonal eigenvectors
Notation:

We can think of the Rayleigh quotient as a continuous function over x.
It turns out (after analysis in Bau)

This idea inspires the following algorithm
POWER ITERATION:



One way we can think of this is from a theorem that as n → ∞, Anx approaches to the
eigenvector with associated eigenvalue of largest magnitude. Applying the Raylaigh
quotient retieves that eigenvalue.

This brings us to...
INVERSE ITERATION:



If we select μ smartly, with μ being closer to our desired eigenvalue that the other, we can
expect rapid convergence.
It turns out that if μ is an eigenvalue, the illconditionedness of (A − μI)−1 is not a problem.

RAYLEIGH QUOTIENT ITERATION:

What is the idea? When we apply A to v in power iteration, we are getting a better
eigenvalue estimate. With a better eigenvalue estimate, we do the inverse in inverse
iteration to get a better eigenvector estimate. Boom boom pow we can combine the two.



Cubic convergence is FUCKING AWESOME

QR Algorithm without Shifts



The most basic form of the QR algorithm is freakishly simple.

We can get that sweet sweet cubic convergence with this simple little algorithm, but only
when we make it a little less simple.

Algorithm 28.1 converges to a Schur form for A (eigenvalue revealing facorization). We
can get an intuition for this by looking at the final product in each iteration.

A(k) = R(k)Q(k) = (Q(k))T A(k−1)Q(k)

Now this looks like a Rayleigh quotient matrix, so it makes sense that these iterations are



eigenvalue revealing. To make greater sense of what is occurring in the QR algorithm, let
us first consider another method, simultaneous iteration.

SIMULTANEOUS ITERATION:
Simultaneous iteration builds on the idea of power iteration. Instead of starting with 1
vector, I want to start with n vectors and obtain n eigenvectors. The main idea is that if I
have have n linearly independent vectors v1, … , vn, then the space of ⟨A(k)v1, … , A(k)vn⟩

should converge to the space ⟨q1, … , qn⟩ spanned by the eigenvectors corresponding to
the n largest eigenvalues. Greater mathematical justification of this can be found in the
chapter.

Some nice math tells us that not only does the column space of Q̂(k) span the space of
our n eigenvectors, but the columns actually converge to those eigenvectors. Makes
sense.

NOW, we can understand the QR algorithm. Turns out, the QR algorithm is equivalent to
simultaneous iteration applied to m initial vectors.



pf. A pretty simple induction. Can be found in the textbook.

Convergence:



QR Algorithm with Shifts
The main idea is that the same reasons that make shifting in inverse iteration converge so
fast with good eigenvalue estimates applies here.

Other eigenvalue algorithms

Iterative Methods
Overview of Iterative Methods
Direct matrix algorithms where we cannot take advantage or sparsity are bottlenecks at
O(m3). If we could somehow do this in O(m2), then we could solve problems with much
larger matrices.

BIG IDEA
When we are doing a task with extremely large matrices, we aren't dilly dallying with
random matrices. Perhaps we are working with the discretization of a differential or
integral equation. In practice, large matrices are sparse, and we can abuse this sparsity. If
we can limit our interaction with our large matrix to matrix multiplication, we never have to
deal with the pain of a huge matrix, and instead can take advantage of the sparsity for
O(m) matrix multiplication.

Jacobi Iteration
Jacobi iteration is a classical iterative method for solving Ax = b.
Let x∗ be the solution such that Ax∗ = b. With Jacobi iteration, we want to create a
sequence of iterates x1, … , xn that converge to x∗.
Idea: Split up A into easier sub components to work with i.e THE DIAGONAL.

A = A − D + D

Now, we are solving

(A − D + D)x = b

Define our iterates as follows:

(A − D)xn + Dxn+1 = b

The idea is that the iterates should converge to the fixed point x∗, thus, our update is:



x(n+1) = D−1(b − (A − D)x(n)) = D−1b − D−1(A − D)x(n)

Analyzing convergence.
Lets M = D−1(A − D) be called our iteration matrix.
Trivially, we have

x(n+1) = D−1b − Mx(n)

x∗ = D−1b − Mx∗

Defining our error en = xn − x∗

x(n+1) − x∗ = −M(x(n) − x∗) ⟹ e(n+1) = (−1)nM ne(0)

To guarantee convergence, we must have M n send all vectors to 0 as n → ∞.
Thus, a necessary and sufficient condition for guaranteeing the convergence of Jacobi
iteration is that the spectrum of M, ρ(M) < 1 where

ρ(M) = max
λ∈Λ(M)

|λ|

THM: If A is strictly diagonally dominant, then Jacobi iteration is guaranteed to converge.
pf. Easy to show that this causes the iteration matrix to have spectrum < 1.

THM: If A is 2x2, symmetric, positive definite, then Jacobi iteration converges.

To solve a system to a tolerance ϵ, Jacobi iteration needs log( 1
ϵ )κ2(A) iteration

Per iteration cost is ~ n2

Gauss-Seidel Iteration
The main idea behind Jacobi iteration is that the inverse matrix we calculate at each
iteration must be easy. Since we only use the inverse of a diagonal matrix in Jacobi, it is
easily computed by constructing a diagonal matrix with the inverse of the diagonal
elements. In earlier chapters, we saw that is it easy to solve a system Lx = b where L is
lower triangular using forward substitution (similarly, we can use backward substitution for
upper triangular matrix). Gauss-Seidel uses this idea.

Consider the system Ax = b

We can split up A as follows

A = L + R

where L is lower triangular and R is strictly upper triangular.
Like Jacobi iteration, we define our sequence of iterates as follows:



Lx(n+1) = b − Rx(n) ⟹ x(n+1) = L−1(b − Rx(n))

The same error analysis shows us:

e(n) = (−1)n(L−1R)ne(0)

Thus, Gauss-Seidel has the same convergence criteria where

ρ(L−1R) < 1

THM: Gauss-Seidel converges on strictly diagonally dominant matrices.
pf. Bound eigenvalues with gershgorin circle theorem.

THM: Gauss-Seidel converges for symmetric, positive definite matrices.

Understanding Jacobi & Gauss-Seidel through the
lens of optimization
Suppose A is symmetric, positive definite
We can view solving the system Ax = b as the following optimization problem

min
x

f(x) =
1

2
xT Ax − bT x

where

∇f(x) = Ax − b

For Jacobi iteration, we can rewrite our update as:

x(n+1) = x(n) − D−1(Ax(n) − b)

This is precisely gradient descent with preconditioner D−1:

x(n+1) = x(n) − D−1∇f(x(n))

For Gauss-Seidel, at iteration k+1, we update each coordinate i sequentially:

x
(k+1)
i = arg min

xi

f(x
(k+1)
1 , … , x

(k+1)
i−1 , xi, x

(k)
i+1, … , x

(k)
n )

This is exactly coordinate descent on our quadratic objective function. The update can be
computed in closed form since:

∂f

∂xi

=
n

∑
j=1

aijxj − bi



Setting this to zero and solving for xi gives us:

x
(k+1)
i =

1

aii

(bi −∑
j<i

aijx
(k+1)
j −∑

j>i

aijx
(k)
j )

This optimization perspective provides several insights:

Krylov Subspace Methods
Here, we move on from classical iterative methods into the family of iterative methods
known as Krylov Subspace Methods.

Arnoldi Iteration
The Arnoldi Iteration is a Gram-Schmidt style iteration for transforming a matrix to
Hessenburg form. Why? Consider the analogy of QR factorization. We saw Householder
reflectors which triangularize A through a series of orthogonal transformations, and Gram-
Schmidt orthogonalization which orthogonalizes A through a series of triangular
operations. The thing about Gram-Schmidt is that it can be stopped early to produce a
reduce QR factorization. To construct a Hessenburg, we last saw the use of Householder
reflectors operating on both sides of the matrix (similarity transformation). Thus, the
Arnoldi iteration is the analogue of the Gram-Schmidt process for similarity
transformations to Hessenburg form. Like Gram-Schmidt, we can stop early, leading to a
partial reduction to Hessenburg form, which can be very useful.

1. Both methods are minimizing the same quadratic objective function
2. Gauss-Seidel/coordinate descent often converges faster because it uses the most

recent updates
3. The convergence rate depends on the conditioning of A, just as in optimization
4. The connection to optimization allows us to apply optimization theory to understand

convergence properties



A ∈ Rm×m, n < m. From Trefethen and Bau





GMRES
Generalized Minimal Residuals

Conjugate Gradients
Conjugate Gradients is an algorithm designed to minimize the A norm of the error as we
expand our Krylov subspace.

Algorithm:
x0 = 0, r0 = b, p0 = r0 = b

At iteration k:
αk =

⟨rk−1, rk−1⟩
⟨pk−1, Apk−1⟩

xk = xk−1 + αkpk−1

rk = b − Axk = rk−1 − αkApk−1

βk =
⟨rk, rk⟩

⟨rk−1, rk−1⟩

pk = rk + bkpk−1

So what is going on?



Important facts:

Fast Fourier Transform

Residuals r are orthogonal
Search directions p are A orthogonal
At each iteration k, CG minimizes |ek|A where xk ∈ Kk(A, b)
|en|A

|e0|A
= (

√κ−1

√κ+1
)n


