Fundamentals

Norms

Induced matrix norms

||A||1: maximum column sum of A
pf. Show the norm is bounded above by max column sum, use e; to show
equality.

||Al|2: Largest singular value

|| A||s: maximum row sum of A
Same idea as with 1 norm

||A|| 7 The square root of the sum of the squared singular values.

2-norm and F-norm are invariant under unitary multiplication

Singular Value Decomposition (SVD)

Theorems

Every matrix has an SVD, singular values are uniquely determined. If A is square and
singular values are distinct, then left and right singular vectors are unique up to
complex signs.

The nonzero singular values of A are the square roots of the nonzero singular values
of A*A

For square A, its determinant is the product of singular values (which is the product
of eigenvalues)

Low Rank Approximations

Theorems

A =370 ojuvj

Forany 0 <v <r,def A, = ij.zl oju;vj, if v =min(m,n), we can define g,+1 = 0.
Then we have ||A — A,||, = inf||A — B||s = 0,41

A, minimizes the error in the Frobenius norm where the error is the sqrt of the sum

of the remaining squared singular values.



QR Factorization and Least Squares

Projectors

A square matrix P is a projector is P? = P. AKA Idempotent
We can think of a projector as splitting the space into two.
Orthogonal projectors

hermitian projectors

Given matrix with orthonormal columns Qn we have P = QnQ;‘L

Rank 1 projector: P = qq*

QR Factorization

Consider m x n matrix A

Reduced QR: Q € C™*", R € Cn

FullQR: Q € C™ ™, R € C™*"

Gram-Schmidt Orthogonalization presents a way to form reduced QR

Like successive orthogonalization

Algorithm 7.1. Classical Gram—Schmidt (unstable)

for j=1ton
‘Uj=ﬂ.j
fori=1toj—-1
T = qia;

U; =V — T4
Tiji = “1’3‘”2

g = v;/7y;

Every matrix A € C™*™ where m > n has a full QR decomposition (hence reduced)

Every full rank A has a unique QR factorization if positive diagonals.

Gram Schmidt Orthogonalization

We can think of GS as each iterations projecting the column a; into the space orthogonal
to the previous collected g's.



Algorithm 7.1 computes one large projection of rank m - (j-1).

For each value of j, Algorithm 7.1 com;utes a single Ol‘til.OgOna.l projection
of rank m — (5 — 1),
'Uj - Pjaj‘ (8.4)

In contrast, the modified Gram-Schmidt algorithm computes the same result
by a sequence of j — 1 projections of rank m — 1. Recall from (6.9) that P,
denotes the rank m — 1 orthogonal projector onto the space orthogonal to a
nonzero vector ¢ € C™. By the definition of P, it is not difficult to see that

P; = PJ.q,'_J“'PJ.ﬂPJ_q;'.' (8.5)
again with P; = I. Thus an equivalent statement to (8.4) is
Uj = P.LE;‘—I ”'P.LMPJ.Qla'j" (8.6)

The modified Gram-Schmidt algorithm is based on the use of (8.6) instead of
(8.4).

Algorithm 8.1. Modified Gram—-Schmidt
fori=1ton

v; = a;
fori=1ton

i = vl

g =v;/ry

forj=i+1ton
Tij = € Y;

In MGS, you are projecting the rest of the vectors into the space orthogonal to the gs you

have already formed.

This can be viewed as "triangular orthogonalization" where each iteration multiplies on the
right by an upper triangular matrix to form Q. This bears a close resemblance to gaussian
elimination.

Householder Triangularization



The aim of householder triangularization is to successively form an upper triangular matrix
through a series of orthogonal transformations. At iteration k, we want to introduce zeros
below the k-th diagonal entry.

Better of two reflectors: we want to reflect over the vector not too close to itself

At iteration k:

x = Ar:m (the vector of the kth column from rows k:m)
v = —sign(x)||z||le; — z or v = sign(z1)||z|le; + =
F=1-2%

Conditioning and Stability

Condition number of matrix vector product: || A||
Condition number of Matrix: K(A) =||A][||A 7]

IEd]
|| Az]]

Systems of Equations

Gaussian Elimination

LU Factorization:
A = LU by triangular triangularization

Let A be an m x m square matrix (can be done for nonsquare but rare)

L, 1...LoyL1A=U

Where L are lower triangular and U is upper triangular. Then our LU decomposition
becomes

A=LUwhereL=L;'L,*...L 1,



At step k (starting at 1), we are trying to make the k-th column of U 0 below the diagonal

L, must be chosen so that

Iy Iy
. L .
T ke g T ek
T = — Lz, =
Ttk 0
| zmk J L 0 d

To do this we wish to subtract £, times row & from row j, where £, is the
multiplier

T.

by = 2 (k<j<m). (20.6)
T ke

The matrix L, takes the form

1

~lepap 1

mk

Two strokes of luck:

L' = L, with sub diagonal entries negated

L is just the unit lower triangular matrix with the nonzero columns of L;'L;?... L}
inserted into the right places.

Algorithm 20.1. Gaussian Elimination without Pivoting

U=A, L=1
fork=1tom -1
forj=k+1tom
fjk = u’jk/ Upp
Ujdeem = Yjkeem — LikUk k:m




Instability without pivoting
if a pivot has an extremely small number, dividing by this pivot can introduce a lot of
numerical instability

Pivoting

Pivoting allows us to address the instability of GE.
We generally want to select pivots as the largest number from set of candidates
At iteration k

We move pivot candidate z;; into the (k, k) position by permuting the rows and
columns

Partial pivoting

Select the largest subdiagonal entry in column k. This is equivalent to performing regular
LU on a permutated matrix PA.

PA=LU

Why? Our third stroke of luck

Selecting the largest subdiagonal entry at interation k looks like

L,P,...[1\PLA=U
To show an example of our third stroke of luck, consider
L3P3LoPoL1PiA=U
This can be reordered as
LYLY L PsPyPL A =U
Where
L, =1L, Ly=PL,P;', L'y = P3P,L, P, ' P; "

In general, for an m X m matrix, the factorization (21.1) provided by
Gaussian elimination with partial pivoting can be written in the form

(L:n—l T L;:L'l)(qu - PP )A=T, (21.5)
where L}, is defined by

1 Pen Ly Py - PRl (21.6)



Of course, since we do not know P ahead of time, we do not perform standard gaussian
elimination on PA.

Algorithm 21.1. Gaussian Elimination with Partial Pivoting

U=A, L=1, P=1
fork=1tom—-1
Select ¢ > k to maximize |U.-;,|

U km U (interchange two rows)

ikim
ek,l:k—l < Lk-1
Dy, < D
forj=k+1tom
b = “jk/ Upp

Ujkeom = Wil — Ejku'k.k:m

Questions: How to recover the original LU after pivoting?

Stability of GE

While proven to be both forward and backward stable, the bounds that guarantee stability
are batshit insane (2™). It turns out in practice, the growth factors that contribute to this
bound are never seen in reality. This requires a very special column space of Aan L.
Growth factor:

max; ; |u]
max; ; |a,;|

p =



Worst-Case Instability

For certain matrices A, despite the beneficial effects of pivoting, p turns out
to be huge. For example, suppose A is the matrix

1 1
-1 1 1

A=|-1-1 1 1. (22.4)
-1 -1-1 1 1
-1 -1 -1 -1 1

At the first step, no pivoting takes place, but entries 2,3,...,m in the final
column are doubled from 1 to 2. Another doubling occurs at each subsequent
elimination step. At the end we have

[ 1

1
2

U = 1 4. (22.5)
8

The final PA = LU factorization looks like this:

1 1 [ 1 171 1]
-1 1 1 -1 1 1 2
-1 -1 1 1|=-1-1 1 1 4
-1 -1-1 11 -1 -1-1 1 1 8
| -1 -1 -1 -1 1 | -1 -1 -1 -1 1]} 16 _

For this 5 x 5 matrix, the growth factor is p = 16. For an m x m matrix of the
same form, it is p = 2™~1. (This is as large as p can get; see Exercise 22.1.)

Cholesky Factorization

How about LU for symmetric matrices. Given hermitian, positive definite A € C™*™, we
want to find upper triangular matrix Rs.t A = R*R



Cholesky Factorization

In order for the symmetric triangular reduction to work in general, we need a
factorization that works for any a,, > 0, not just a;; = 1. The generalization
of (23.1) is accomplished by adjusting some of the elements of R, by a factor

of \/@;;. Let a = ,/@;; and observe:

A4 = a;; w
L w K |
[ 011 0 a w'/a
= ] / ] = RIAR,.
w/a I]]0 K-ww/ay 0 I

This is the basic step that is applied repeatedly in Cholesky factorization.
If the upper-left entry of the submatrix K — ww*/a,, is positive, the same
formula can be used to factor it; we then have A; = R}A,R, and thus A =
R}R5A,R,R,. The process is continued down to the bottom-right corner,
giving us eventually a factorization

A=RiR;-- R, R, RyR,. (23.2)
R R
This equation has the form
A - R*R, TJ‘J > 01 (23.3)

where R is upper-triangular. A reduction of this kind of a hermitian positive
definite matrix is known as a Cholesky factorization.

Theorems:

Every hermitian positive definite matric has a Cholesky factorization
Always stable, subtleties in standard Gaussian elimination disappear.
matrix norm of R is bounded above by A
Implies there is always a stable way to solve hermitian positive definite systems of
equations Az =1b



Algorithm 23.1. Cholesky Factorization

R=A
fork=1tom
forj—k+1tom

Rj.}':m Jugim Rk,j:mRkj/Rkk

Rk,km = Rk,k;m/ vRH:

Eigenvalues

Eigenvalue Problems
Unitary Diagonalization:

A matrix A is unitarily diagonalizable iff it is normal
A matrix is normal iff A*A = AA*

Schur Factorization:
THM: Every square matrix A has a schur factorization A = QT'Q*, where @ is orthogonal

and T is upper triangular.
Steps to find Schur factorization:

Eigenvalue-Revealing Factorizations

In the preceding pages we have described three examples of eigenvalue-reveal-
ing factorizations, factorizations of a matrix that reduce it to a form in which
the eigenvalues are explicitly displayed. We can summarize these as follows.

A diagonalization A = XAX ™! exists if and only if A is nondefective.
A unitary diagonalization A = QAQ" exists if and only if A is normal.
A unitary triangularization (Schur factorization) A = @TQ* always exists.

Overview of Eigenvalue Problems

The algebraic nature of eigenvalue problems (which can be represented as root finding
problems and vice versa) tell us that there can be no finite method for finding exact
solutions. Thus, we are left to the family of iterative methods.



Two phases of eigenvalue computation:

Reduction to Hessenburg form (zeros below first subdiagonal)
O(m?)
Iterative portion
- Generally convergence to machine precision is achieved in O(m) iterations.
- Each iteration is at cost O(m?)
- Total requirement is O(m?) flops
Without reduction to hessenburg form, reach iteration would involve a full matrix,
requiring O(m?) work. NOT GOOD
If Ais Hermitian, the Hessenburg form is tridiagonal: O(m)

Reduction to Hessenburg or Tridiagonal form

Our goal is to introduce zeros below the main subdiagonal. It is important to remember we
are trying to construct a similar matrix, that is, the hessenburg form must have have the
same eigenvalues as A if we want to find the eigenvalues of A. Thus, any transformation
we apply to A on the left must also be applied on the right: H = QAQ*

If we naively apply householder reflector @; from QR, we lose all the zeros introduced by
left multiplication when we apply Q: to the right. .

[ X X X X X | [ X X X X %] (X X X X X ] [ X X X X X
X X X X X . 0 X XXX X X X X XXXXX
X X X X X i 0 X XXX X X X X Ei XXXXX
X X X X X 0 X XXX X X X X XXXXX

[ X X X X X | | 0 X X X X | X X X X | | XX X X X |

A Q1A QiA Q1AQ

A good idea is to apply a reflector that leaves the first row/column unchanged.
We can think of our first reflector as the following block matrix:

where F; is the householder reflector for the (m-1) vector As.p, 1
As we iterate, the identity matrix in the top left gets larger and our bottom right reflector
gets smaller.



Algorithm 26.1. Householder Reduction to Hessenberg Form

fork=1tom -2
T = Ak+ltm,k
v, = sign(z,)||zll.e, + @
U, = U/ ||vll2
Ak-i—l:m,k:m = Ak+1:m,k:m - 211&(”;Ak4.1:m,k:m)

o *
Al:m,k+1:m - Al:m,kﬂ—l:m - 2(A1:m,k+1;mﬂk)ﬂk

Stability: Backwards stable

Rayleigh Quotient, Inverse Iteration

IN THE FOLLOWING 4 LECTURES, WE RESTRICT OURSELF TO THE STUDY OF
REAL, SYMMETIC MATRICES. A ¢ R™*™

A priori, A has a complete set of orthogonal eigenvectors
Notation:

real eigenvalues: Ay, ..., A,

orthonormal eigenvectors: gy, ..., q,,-

The Rayleigh quotient of a vector z € IR™ is the scalar

T
r(:n) _ ' Az

Tz
We can think of the Rayleigh quotient as a continuous function over x.
It turns out (after analysis in Bau)

(27.1)

Thus the Rayleigh quotient is a quadratically accurate estimate of an eigen-
value. Herein lies its power.

This idea inspires the following algorithm
POWER ITERATION:



Algorithm 27.1. Power Iteration

v(®) = some vector with ||»(V| =1

fork=1,2,...
w = Ay*-1) apply A
v® = w/||w] normalize
AR = ()T Aqylk) Rayleigh quotient

One way we can think of this is from a theorem that as n — oo, A"z approaches to the
eigenvector with associated eigenvalue of largest magnitude. Applying the Raylaigh
quotient retieves that eigenvalue.

On its own, power iteration is of limited use, for several reasons. First, it
can find only the eigenvector corresponding to the largest eigenvalue. Second,
the convergence is linear, reducing the error only by a constant factor = |\, /)|
at each iteration. Finally, the quality of this factor depends on having a
largest eigenvalue that is significantly larger than the others. If the largest
two eigenvalues are close in magnitude, the convergence will be very slow.

Fortunately, there is a way to amplify the differences between eigenvalues.

This brings us to...
INVERSE ITERATION:

Inverse Iteration

For any 1 € IR that is not an eigenvalue of A, the eigenvectors of (A — ul)™*
are the same as the eigenvectors of A, and the corresponding eigenvalues are
{(A; — p)~'}, where {),} are the eigenvalues of A. This suggests an idea.
Suppose u is close to an eigenvalue A, of A. Then (A; — 1) ' may be much
larger than (A; — p)~" for all j # J. Thus, if we apply power iteration to
(A— pI)™L, the process will converge rapidly to g,. This idea is called inverse
iteration.

Algorithm 27.2. Inverse Iteration

v(® = some vector with |[v(V] =1

for k=1,2,...
Solve (A — pl)w = v*~1 for w apply (A — pI)™!
v®) = w/||w| normalize
AE) = (y(R))T Ag(k) Rayleigh quotient




If we select 1 smartly, with u being closer to our desired eigenvalue that the other, we can
expect rapid convergence.
It turns out that if u is an eigenvalue, the illconditionedness of (A — uI)~! is not a problem.

Inverse iteration is one of the most valuable tools of numerical linear al-
gebra, for it is the standard method of calculating one or more eigenvectors
of a matrix if the eigenvalues are already known. In this case Algorithm 27.2
is applied as written, except that the calculation of the Rayleigh quotient is
dispensed with.

RAYLEIGH QUOTIENT ITERATION:

So far in this lecture, we have presented one method for obtaining an eigenvalue
estimate from an eigenvector estimate (the Rayleigh quotient), and another
method for obtaining an eigenvector estimate from an eigenvalue estimate
(inverse iteration). The possibility of combining these ideas is irresistible:

one step of inverse iteration

approximate A; approximate gq;

Rayleigh quotient

What is the idea? When we apply A to v in power iteration, we are getting a better
eigenvalue estimate. With a better eigenvalue estimate, we do the inverse in inverse
iteration to get a better eigenvector estimate. Boom boom pow we can combine the two.

Algorithm 27.3. Rayleigh Quotient Iteration

v® = some vector with ||[v@| =1
A0 = (4(0)TAy®) = corresponding Rayleigh quotient

fork=1,2,...
Solve (A — A¥*NI)w = v*-1 for w  apply (A — A*-D])-1
v®) = w/||w| normalize

AE) = (y(R))TA4y(*) Rayleigh quotient




The convergence of this algorithm is spectacular: each iteration triples the
number of digits of accuracy.

Theorem 27.3. Rayleigh quotient iteration converges to an eigenvalue/eigen-
vector pair for all ezcept a set of measure zero of starting vectors v(9. When
it converges, the convergence is ultimately cubic in the sense that if X; is an
eigenvalue of A and v(® is sufficiently close to the eigenvector q;, then

[ = (g,)ll = O(||lv™® — (£g)II°) (27.6)

and
JAGHD — 2 ] = O(IA®) — A, %) (27.7)

as k — oo. The + signs are not necessarily the same on the two sides of

(27.6).
Cubic convergence is FUCKING AWESOME
Operation Counts

We close this lecture with a note on the amount of work required to execute
each step of the three iterations we have described.

First, suppose A € R™*™ is a full matrix. Then each step of power
iteration involves a matrix-vector multiplication, requiring O(m?) flops. Each
step of inverse iteration involves the solution of a linear system, which might
seem to require O(m3) flops, but this figure reduces to O(m?) if the matrix is
processed in advance by LU or QR factorization or another method. In the
case of Rayleigh quotient iteration, the matrix to be inverted changes at each
step, and beating O(m?®) flops per step is not so straightforward.

These figures improve greatly if A is tridiagonal. Now, all three iterations
require just O(m) flops per step. For the analogous iterations involving non-
symmetric matrices, incidentally, we must deal with Hessenberg instead of
tridiagonal structure, and this figure increases to O(m?).

QR Algorithm without Shifts



The most basic form of the QR algorithm is freakishly simple.

Algorithm 28.1. “Pure” QR Algorithm

AO® = 2
fork=1,2,...

QW R() = A(-1) QR factorization of A%~

AR = R)QK) Recombine factors in reverse order

We can get that sweet sweet cubic convergence with this simple little algorithm, but only
when we make it a little less simple.
1. Before starting the iteration, A is reduced to tridiagonal form, as dis-
cussed in Lecture 26.
2. Instead of A®, a shifted matrix A® — 4® ] is factored at each step,
where ;(¥) is some eigenvalue estimate.

3. Whenever possible, and in particular whenever an eigenvalue is found,
the problem is “deflated” by breaking A®*) into submatrices.

A QR algorithm incorporating these modifications has the following outline.

Algorithm 28.2. “Practical” QR Algorithm

(QUTAMQO = A A is a tridiagonalization of A
fork=1,2,...
Pick a shift u®) e.g., choose p®) = A%-1)
QM R® = AG-D — 1 QR factorization of A®~1) — u®r
Al = RIQH) 4 () T Recombine factors in reverse order

If any off-diagonal element AE?H is sufficiently close to zero,

set Aj,j+1 = AJ"FI,J‘ = 0 to Dbtajn

A 0
— A®

and now apply the QR algorithm to A, and A,.

Algorithm 28.1 converges to a Schur form for A (eigenvalue revealing facorization). We
can get an intuition for this by looking at the final product in each iteration.

AW = RBQE) — (QW)T Ak-1) k)

Now this looks like a Rayleigh quotient matrix, so it makes sense that these iterations are



eigenvalue revealing. To make greater sense of what is occurring in the QR algorithm, let
us first consider another method, simultaneous iteration.

SIMULTANEOUS ITERATION:

Simultaneous iteration builds on the idea of power iteration. Instead of starting with 1
vector, | want to start with n vectors and obtain n eigenvectors. The main idea is that if |
have have n linearly independent vectors v, . .., vy, then the space of (A®vy,..., AWy,)
should converge to the space (q,, ..., q,) spanned by the eigenvectors corresponding to
the n largest eigenvalues. Greater mathematical justification of this can be found in the
chapter.

As k — 00, the vectors 17, ..., v(® in the algorithm (28.1)—(28.3) all converge
to multiples of the same dominant eigenvector ¢, of A. Thus, although the
space they span, (viﬂ, e ,v}k)), converges to something useful, these vectors
constitute a highly ill-conditioned basis of that space. If we actually carried
out simultaneous iteration in floating point arithmetic as just described, the
desired information would quickly be lost to rounding errors.

The remedy is simple: one must orthonormalize at each step rather than
once and for all. Thus we shall not construct V(*¥) as defined above, but a
different sequence of matrices Z*) with the same column spaces.

Algorithm 28.3. Simultaneous Iteration

Pick Q® ¢ R™ " with orthonormal columns.

fork=1,2 ...
7 = Aé(k—l]
QW RME = 7 reduced QR factorization of Z

Some nice math tells us that not only does the column space of Q(k) span the space of
our n eigenvectors, but the columns actually converge to those eigenvectors. Makes
sense.

NOW, we can understand the QR algorithm. Turns out, the QR algorithm is equivalent to
simultaneous iteration applied to m initial vectors.



Here are the three formnlas that define simultaneous iteration with Qm} =
I, followed by a fourth formula that we shall take as a definition of an m x m
matrix A%,

Simultaneous Iteration:

QY = 1, (28.7)
7 = AQ¥*™Y, (28.8)
Zz = QWRW, (28.9)

AW = (QITAQW. (28.10)

And here are the three formulas that define the pure QR algorithm, followed
by a fourth formula that we shall take as a definition of an m X m matrix Q["):

Unshifted QR Algorithm:

A® — A, (28.11)
AR-D = QR RO (28.12)
A® = RRIQEH) (28.13)
QW — QWQ®@...Q®W. (28.14)

Additionally, for both algorithms, let us define one further m x m matrix E““'l,
R® = B RE-1)... gV, (28.15)
We can now exhibit the equivalence of these two algorithms.

Theorem 28.3. The processes QZB.?}ﬂ%.IO) and (28.11)—(28.14) generate
identical sequences of matrices R k) Q“‘ , and A®) namely, those defined by
the QR factorization of the kth power of A,

At = QW R®, (28.16)
together with the projection
AW = (Q)TAQW. (28.17)
pf. A pretty simple induction. Can be found in the textbook.

Convergence:



QR Algorithm with Shifts

The main idea is that the same reasons that make shifting in inverse iteration converge so
fast with good eigenvalue estimates applies here.

Other eigenvalue algorithms

Iterative Methods

Overview of lterative Methods

Direct matrix algorithms where we cannot take advantage or sparsity are bottlenecks at
O(m?). If we could somehow do this in O(m?), then we could solve problems with much
larger matrices.

BIG IDEA

When we are doing a task with extremely large matrices, we aren't dilly dallying with
random matrices. Perhaps we are working with the discretization of a differential or
integral equation. In practice, large matrices are sparse, and we can abuse this sparsity. If
we can limit our interaction with our large matrix to matrix multiplication, we never have to
deal with the pain of a huge matrix, and instead can take advantage of the sparsity for
O(m) matrix multiplication.

Jacobi lteration

Jacobi iteration is a classical iterative method for solving Az = b.

Let * be the solution such that Az* = b. With Jacobi iteration, we want to create a
sequence of iterates z, ..., z, that converge to z*.

Idea: Split up A into easier sub components to work with i.e THE DIAGONAL.

A=A-D+D
Now, we are solving
(A—D+D)x=1b
Define our iterates as follows:
(A— D)z" + Dz"™' =b

The idea is that the iterates should converge to the fixed point z*, thus, our update is:



™) =D 'b—(A—D)z™)=D"'o— D YA - D)z™
Analyzing convergence.
Lets M = D~!(A — D) be called our iteration matrix.
Trivially, we have
™Y = Db — Ma™
z* =D 'b— Mz"
Defining our error e = z" — x*

2D oy — _M(x(n) —z¥) = e(ntl) — (_1)nMne(0)

To guarantee convergence, we must have M "™ send all vectors to 0 as n — oo.
Thus, a necessary and sufficient condition for guaranteeing the convergence of Jacobi
iteration is that the spectrum of M, p(M) < 1 where
M) = A
p(M) \max, Al
THM: If Ais strictly diagonally dominant, then Jacobi iteration is guaranteed to converge.
pf. Easy to show that this causes the iteration matrix to have spectrum < 1.

THM: If Alis 2x2, symmetric, positive definite, then Jacobi iteration converges.

To solve a system to a tolerance ¢, Jacobi iteration needs log()x2(A) iteration
Per iteration cost is ~ n?

Gauss-Seidel Iteration

The main idea behind Jacobi iteration is that the inverse matrix we calculate at each
iteration must be easy. Since we only use the inverse of a diagonal matrix in Jacobi, it is
easily computed by constructing a diagonal matrix with the inverse of the diagonal
elements. In earlier chapters, we saw that is it easy to solve a system Lz = b where L is
lower triangular using forward substitution (similarly, we can use backward substitution for
upper triangular matrix). Gauss-Seidel uses this idea.

Consider the system Az = b
We can split up A as follows

A=L+R

where L is lower triangular and R is strictly upper triangular.
Like Jacobi iteration, we define our sequence of iterates as follows:



L™ = b — Rz — ) = L71(p — Re™)
The same error analysis shows us:
e = (—1)"(L*1R)”e(0)
Thus, Gauss-Seidel has the same convergence criteria where
p(L7'R) <1
THM: Gauss-Seidel converges on strictly diagonally dominant matrices.

pf. Bound eigenvalues with gershgorin circle theorem.

THM: Gauss-Seidel converges for symmetric, positive definite matrices.

Understanding Jacobi & Gauss-Seidel through the
lens of optimization

Suppose A is symmetric, positive definite
We can view solving the system Az = b as the following optimization problem

1
min f(z) = EwTAa: — bz

where
Vf(z)=Ax—b
For Jacobi iteration, we can rewrite our update as:
) = 20 _ D71(Az™ — p)
This is precisely gradient descent with preconditioner D—!:
) = g — DIV f(z™)

For Gauss-Seidel, at iteration k+1, we update each coordinate i sequentially:

k+1 . k+1 k+1 k k
:I:E+):argrr;;nf(w§+),...,m§_J{),wi,a?Z(Jr)l,..., ())

This is exactly coordinate descent on our quadratic objective function. The update can be
computed in closed form since:

of =
= Q;jTj — bi



Setting this to zero and solving for z; gives us:

(k+1) 1 (k+1) (k)

7<t >t
This optimization perspective provides several insights:

Both methods are minimizing the same quadratic objective function
Gauss-Seidel/coordinate descent often converges faster because it uses the most
recent updates

The convergence rate depends on the conditioning of A, just as in optimization

The connection to optimization allows us to apply optimization theory to understand
convergence properties

Krylov Subspace Methods

Here, we move on from classical iterative methods into the family of iterative methods
known as Krylov Subspace Methods.

Arnoldi lteration

The Arnoldi Iteration is a Gram-Schmidt style iteration for transforming a matrix to
Hessenburg form. Why? Consider the analogy of QR factorization. We saw Householder
reflectors which triangularize A through a series of orthogonal transformations, and Gram-
Schmidt orthogonalization which orthogonalizes A through a series of triangular
operations. The thing about Gram-Schmidt is that it can be stopped early to produce a
reduce QR factorization. To construct a Hessenburg, we last saw the use of Householder
reflectors operating on both sides of the matrix (similarity transformation). Thus, the
Arnoldi iteration is the analogue of the Gram-Schmidt process for similarity
transformations to Hessenburg form. Like Gram-Schmidt, we can stop early, leading to a
partial reduction to Hessenburg form, which can be very useful.



A € R™™ n <m. From Trefethen and Bau

A complete reduction of A to Hessenberg form by an orthogonal similarity
transformation might be written A = QHQ*, or AQ = QH. However, in
dealing with iterative methods we take the view that m is huge or infinite, so
that computing the full reduction is out of the question. Instead we consider
the first n columns of AQ = QIH. Let @, be the m x n matrix whose columns

are the first n columns of Q:

q2 PR

Gn

(33.1)



Here and in the lectures ahead, it would be consistent with our usage else-
where in the book to put hats on the symbols @,, since these matrices are
rectangular, but to keep the formulas uncluttered we do not do this.

Let H, be the (n+1)xn upper-left section of H, which is also a Hessenberg

F T |

hy

n

nn

AQn = Qn-]-]_gn.‘.l

matrix: i
hyy
ho1 ho
H, =
Then we have
that is,
A QI q'n =

The nth column of this equation can be written as follows:

Agn = hanl +--- 4+ hﬂﬂQﬂ: + hn+1,ﬂq1:+l.'

Q|

Qﬂ+1

nt1l,n

(33.2)
(33.3)
hln
h’n+1.n |
(33.4)



In words, g, satisfies an (n+ 1)-term recurrence relation involving itself and
the previous Krylov vectors.

The Arnoldi iteration is simply the modified Gram—Schmidt iteration that
implements (33.4). The following algorithm should be compared with Algo-
rithm 8.1.

Algorithm 33.1. Arnoldi Iteration

b = arbitrary, ¢, = b/||b||
forn=12,3,...
v = Ag,
forj=1ton
hin = gjv
v=v—h;.q,
Bosin = 7|l [see Exercise 33.2 concerning A, , = 0]

Qu+1 = U/ hﬂ+1,u

GMRES

Generalized Minimal Residuals

Conjugate Gradients

Conjugate Gradients is an algorithm designed to minimize the A norm of the error as we
expand our Krylov subspace.

Algorithm:
xo=0,70=b,po=790=0>
At iteration k:

o (rp,reen)
k= (Pr—1, APr—1)

Tp = Tp—1 + OPr1

rr=b— Az =711 — 0 Api_1
ﬂk — (T‘k,rk>

<7'k—19 Tk—l)

Pk = Ti + brDr_1

So what is going on?



Important facts:

Residuals r are orthogonal
Search directions p are A orthogonal

At each iteration k, CG minimizes |ex|4 Where zj, € Ki(A,b)
lenla ( VE-1 )n

leola — N V/E+1

Fast Fourier Transform



